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Abstract
A new numerical method, recently developed to study ground states of the
Falicov–Kimball model (FKM), is used to examine the effects of correlated
hopping on the ground-state properties of this model in two dimensions.
It is shown that the ground-state phase diagram as well as the picture of
metal–insulator transitions found for the conventional FKM (without correlated
hopping) are substantially changed when the correlated hopping term is added.
The effect of correlated hopping is so strong that it can induce the insulator–
metal transition, even in the strong-coupling limit, where the ground states of
the conventional FKM are insulating for all f-electron densities.

1. Introduction

Since its introduction in 1969, the Falicov–Kimball model (FKM) [1] has become an important
standard model for a description of correlated fermions on a lattice. The model was originally
proposed to describe metal–insulator transitions and has since been investigated in connection
with a variety of problems such as binary alloys [2], the formation of ionic crystals [3],
and ordering in mixed-valence systems [4]. It is the latter language that we shall use here,
considering a system of localized f electrons and itinerant d electrons coupled via the on-site
Coulomb interaction U . The Hamiltonian of the spinless FKM is

H =
∑

ij

tij d
+
i dj + U

∑

i

f +
i fid

+
i di + Ef

∑

i

f +
i fi (1)

where f +
i , fi are the creation and annihilation operators for an electron in the localized state

at lattice site i with binding energy Ef and d+
i , di are the creation and annihilation operators

for an electron in the conduction band. The conduction band is generated by the hopping
matrix elements tij , which describe intersite transitions between the sites i and j . Usually it is
assumed that tij = −t if i and j are nearest neighbours and tij = 0 otherwise (the conventional
FKM); however, in what follows we consider a much more realistic type of hopping, so for
the moment we leave it as arbitrary.
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Recent theoretical works based on exact numerical and analytical calculations showed
that the FKM, in spite of its relative simplicity, can yield the correct physics for describing
such fundamental phenomena as valence-change transitions, metal–insulator transitions,
crystallization, charge ordering, etc. For example, it was found that the spinless FKM, in
the pressure-induced case, can describe both types of intermediate-valence transition observed
experimentally in rare-earth compounds: a discontinuous insulator–insulator transition for
sufficiently strong interactions [5] and a discontinuous insulator–metal transition for weak
interactions [6]. In addition, at non-zero temperatures this model is able to provide the
qualitative explanation for the anomalous large values of the specific heat coefficient and
for the extremely large changes of the electrical conductivity [7] found in some intermediate-
valence compounds (e.g., in SmB6). Moreover, very recently the spin-one-half version of the
FKM has been used to describe a discontinuous intermediate-valence transition (accompanied
by a discontinuous insulator–metal transition) in SmS [8] as well as for a description of an
anomalous magnetic response of the Yb-based fluctuating-valence compounds [9].

On the other hand, it should be noted that the model Hamiltonian (1) neglects all non-
local interaction terms, and thus it is questionable whether the above-mentioned results persist
also in more realistic situations when non-local interactions will be turned on. An important
non-local interaction term obviously absent in the conventional FKM is the term for correlated
hopping, in which the d-electron hopping amplitudes between neighbouring lattice sites i and
j depend explicitly on the occupancy (f +

i fi) of the f-electron orbitals; i.e.,

t̃ij = tij + t ′ij (f
+
i fi + f +

j fj ). (2)

The importance of the correlated hopping term has already been mentioned by Hubbard [10].
Later Hirsch [11] pointed out that this term may be relevant in the explanation of
superconducting properties of strongly correlated electrons. Here we examine effects of this
term on ground-state properties of the two-dimensional FKM. The same subject has been
studied recently by Wojtkiewicz and Lemanski [12]. To achieve compatibility with their
results (one of goals of this paper is to re-examine these results), we do not consider here other
non-local interactions, although, some of them (e.g., the intersite Coulomb interaction) are of
the same order as the correlated hopping term. This will be dome in a future publication.

Thus the spinless FKM in which the effects of correlated hopping are included can be
written as

H =
∑

〈ij〉
tij d

+
i dj +

∑

〈ij〉
t ′ij (f

+
i fi + f +

j fj )d
+
i dj + U

∑

i

f +
i fid

+
i di + Ef

∑

i

f +
i fi . (3)

The first term of (3) is the kinetic energy corresponding to quantum mechanical hopping of
the itinerant d electrons between the nearest-neighbour sites i and j . The second term is just
the correlated hopping term discussed above. The third term describes the on-site Coulomb
interaction between the d-band electrons with density nd = (1/L)

∑
i d

+
i di and the localized

f electrons with density nf = (1/L)
∑

i f
+
i fi , where L is the number of lattice sites. The last

term stands for the localized f electrons whose sharp energy level is Ef .
Since in this spinless version of the FKM without hybridization the f-electron occupation

number f +
i fi of each site i commutes with the Hamiltonian (3), the f-electron occupation

number is a good quantum number, taking only two values: wi = 1 or 0, according to whether
or not the site i is occupied by the localized f electron. Therefore the Hamiltonian (3) can be
written as

H =
∑

〈ij〉
hij (w)d+

i dj + Ef

∑

i

wi (4)

where hij (w) = t̃ij (w) + Uwiδij and

t̃ij (w) = tij + t ′ij (wi + wj). (5)
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Thus for a given f-electron configuration w = {w1, w2, . . . , wL} the Hamiltonian (4) is
the second-quantized version of the single-particle Hamiltonian h(w), so the investigation of
the model (4) is reduced to the investigation of the spectrum of h for different configurations of
f electrons. Since the d electrons do not interact among themselves, the numerical calculations
should precede directly in the following steps.

(i) Having w = {w1, w2, . . . , wL}, U , Ef , and the nearest-neighbour hopping amplitudes t

and t ′ fixed (in the following, t = −1, and all energies are measured in units of t), find all
eigenvalues λk of h(w).

(ii) For a given Nf = ∑
i wi , determine the ground-state energy E(w, U, Ef) = ∑N−Nf

k=1 λk +
EfNf of a particular f-electron configuration w by filling in the lowest Nd = N − Nf

one-electron levels (here we consider only the case Nf + Nd = L, which is the point of
the special interest for valence and metal–insulator transitions caused by promotion of
electrons from localized f orbitals (fn → fn−1) to the conduction band states).

(iii) Find the w0 for which E(w, U, Ef) has a minimum. Repeating this procedure for different
values of U, t ′ and Ef , one can study directly the ground-state phase diagram and valence
transitions (a dependence of the f-electron occupation number on the f-level position Ef )
in the FKM with correlated hopping.

A direct application of this method has been used successfully in our previous papers [5,6]
for the description of ground-state properties of the one-dimensional FKM model without
correlated hopping (t ′ = 0). It was shown that finite-size effects are negligible for a wide
range of the model parameters (e.g., strong interactions) and thus results obtained on relatively
small clusters (L < 30) can be satisfactory extrapolated to the thermodynamic limit (L → ∞).
Using this method we have described satisfactorily the strong-coupling phase diagram as well as
the picture of valence and metal–insulator transitions in the one-dimensional spinless FKM [5]
with t ′ = 0. It was found that for sufficiently large U the spinless FKM undergoes only a few
discrete intermediate-valence transitions. These intermediate-valence transitions are insulator–
insulator transitions, since they are realized between the insulating ground states corresponding
to the most homogeneous configurations, which are the ground states in this region [13]. Thus,
there are no insulator–metal transitions in the 1D conventional FKM for strong interactions. In
our next paper [14], we have shown that this picture of valence and metal–insulator transitions
is dramatically changed if the term for correlated hopping is included. One of the most
important results found for the one-dimensional FKM with correlated hopping was that the
correlated hopping can induce the insulator–metal transition, even in the half-filled-band case
nd = nf = 1/2 [15]1. In this paper we try to show that the same result holds also for the two-
dimensional case. Similar calculations are performed also away from the half-filled-band case
with the goal of examining possibilities for metal–insulator transitions in the strong-coupling
limit. Further inspiration for performing these calculations was provided by the recent paper
of Wojtkiewicz and Lemanski [12], where the authors studied the two-dimensional FKM with
correlated hopping using the combination of a perturbation expansion (up to the second order)
and the method of restricted phase diagrams. They found that just a few phases form the ground-
state phase diagram of the model in the strong-coupling limit. For example, the ground state of
the model for Ef = 0 is the chessboard charge-density-wave (CDW) phase for all 0 < t ′ < 1.
Here we show that some other configurations (e.g., the segregated configuration) can also be
ground states of the FKM at Ef = 0; thereby the ground-state phase diagram as well as the
picture of metal–insulator transitions are substantially changed.

1 Note that such a transition cannot be induced by long-range hopping.
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2. The method

Since the number of configurations that should be examined to obtain the ground-state
energy of the FKM grows exponentially with the system size, direct application of the exact-
diagonalization method described above is restricted to clusters up to 30 sites. In our previous
papers we showed that clusters of this size are sufficient to suppress finite-size effects in one
dimension [5, 6]; however, to obtain reliable results on the ground-state energy of the model
in two dimensions, one has to examine much larger clusters (L ∼ 100). Unfortunately,
the clusters with L > 30 are beyond the reach of present-day computers within exact
diagonalizations, and thus the only way to proceed is to compute the ground-state properties
of the model by an approximate but well controlled method. Here we use the simple method
based on a modification of the exact-diagonalization procedure described above. The method
consists of the following steps:

(i) Chose a trial configuration w = {w1, w2, . . . , wL}.
(ii) Having w, U , and Ef fixed, find all eigenvalues λk of h(w) = T + UW .

(iii) For a given Nf = ∑
i wi , determine the ground-state energy E(w) = ∑L−Nf

k=1 λk +EfNf of
a particular f-electron configuration w by filling in the lowest Nd = L − Nf one-electron
levels.

(iv) Generate a new configuration w′ by moving a randomly chosen electron to a new position
which is also chosen at random.

(v) Calculate the ground-state energy E(w′). If E(w′) < E(w) the new configuration is
accepted, otherwise w′ is rejected.

Then steps (ii)–(v) are repeated until convergence (for given parameters of the model) is
reached. Of course, one can move instead of one electron (in step (iv)) two or more f electrons;
the convergence of the method can thereby be improved. Indeed, tests that we have performed
for a wide range of the model parameters showed that the latter implementation of the method,
in which N0 > 1 electrons (N0 should be chosen at random) are moved to new positions,
overcomes better the local minima of the ground-state energy. This also improves the accuracy
of the method.

This method was first used in our recent paper [16] to study the ground-state properties
of the one- and two-dimensional FKM without correlated hopping. It was found that for
small and intermediate clusters (L ∼ 30) the method is able to reproduce exactly the ground
states of the conventional FKM, even after a relatively small number of iterations (typically
10 000 per site). For such clusters the method is only rarely stopped at the local minimum.
Of course, with increasing L the problem of local minima appears often. Fortunately, it can
be considerably reduced by using a more efficient algorithm (one is discussed above) or by
increasing the number of iterations. The latter case, however, imposes severe restrictions on the
size of clusters than can be studied with this method (L ∼ 100, for 106 iterations per site). To
verify the convergence of this method for the two-dimensional FKM with correlated hopping,
we have performed the same calculations for a cluster of 4 × 4 sites, where ground states can
be obtained also within exact-diagonalization calculations. Numerical results obtained for a
wide range of the model parameters (t ′ = −1, −0.8, . . . , 1, U = 0, 0.1, . . . , 10) showed that
the exact ground states can again be reproduced after ∼10 000 iterations per site.

3. Results and discussion

The most interesting question that arises for the FKM with correlated hopping is whether the
correlated hopping term can change the ground-state phase diagram and the picture of valence
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Figure 1. The t ′–U phase diagram of the two-dimensional FKM with correlated hopping at half-
filling (Ef = 0, nf = nd = 0.5). The three different phases correspond to the CDW state w1,
the configuration with alternating lines of occupied and unoccupied sites (w2), and the segregated
configuration w3. The inset shows the t ′–U phase diagram for nf = 1/4 and U > 2. The two
different phases correspond to the segregated configuration and the configuration w4 that has been
proven to be the ground state of the conventional FKM for large U .

and metal–insulator transitions found for the conventional FKM (t = −1 and t ′ = 0). The
nature of the ground state, its energetic and structural properties, and the correlation-induced
metal–insulator transitions are subjects of special interest. For the conventional FKM these
problems are well understood at least in the symmetric case (Ef = 0, nf = nd = 1/2). In this
case the localized f electrons fill up one of two sublattices of the hypercubic lattice (the CDW
state), and the corresponding ground state is insulating for all U > 0. Thus, for finite interaction
strength there is no correlation-induced metal–insulator transition in the symmetric case.

One can expect, on the basis of simple arguments, the ground-state phase diagram of the
FKM with correlated hopping to be very different from one discussed above for the conventional
FKM. Indeed, the following selection of hopping matrix amplitudes t = −1 and t ′ > 0 may
favour the segregated configuration, since the itinerant d electrons have the lower kinetic energy
in this state. This mechanism could lead, for example, to instability of the CDW state that is the
ground state for t ′ = 0, and thereby to a metal–insulator transition, even in the symmetric case.
To examine the possibilities for such a transition in two dimensions, we have performed an
exhaustive study of the model on 6 × 6 and 8 × 8 clusters (with periodic boundary conditions)
for a wide range of parameters t ′ and U . The results of numerical calculations are summarized
in figure 1 in the form of the t ′–U phase diagram. In addition to the CDW state w1 that is the
ground state at t ′ = 0 for all non-zero U , we found two new phases that can be ground states
of the model—namely, the configuration with alternating lines of occupied and unoccupied
sites w2 and the segregated configuration w3 (see figure 2). Thus at non-zero t ′ the CDW
state w1 becomes unstable against the transition to w2 and w3. The transition from w1 to
w2, like that from w1 to w3, is a insulator–metal transition, since the configuration w1 has
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Figure 2. The ground-state configurations of the two-dimensional FKM with correlated hopping
for nf = 1/2 (w1, w2, and w3) and nf = 1/4 (w4).

the finite gap (∼U ) at the Fermi energy2 for all non-zero values of U , while both w2 and
w3 are metallic in the corresponding regions of stability. Thus we arrive at a very important
conclusion: the correlated hopping term can induce a insulator–metal transition, even in the
half-filled-band case. Another important result, confirming the crucial role of the correlated
hopping term, can be seen from figure 1, where a comprehensive phase diagram for the two-
dimensional FKM with correlated hopping is presented. It is seen that the correlated hopping
can destroy the CDW state, even at large values of the Coulomb interaction (U ∼ 7). This
is an unexpected result, since recent results of Wojtkiewicz and Lemanski [12] based on the
combination of the perturbation expansion (up to second order) and the method of restricted
phase diagrams predicted that the ground state of the model at Ef = 0 and U large is the CDW
state for all values of 0 < t ′ < 1. This discrepancy is probably due to the fact that the authors
examined (as possible ground states) only a restricted set of configurations (consisting of all
periodic configurations having elementary cells up to 12 sites), and the segregated configuration
(which should be the ground state in this region) does not belong to this set. Another possible
explanation of this discrepancy is that the second-order perturbation expansion used by the

2 Since we consider the case Nf + Nd = L, the Fermi level EF and the energy gap � of a configuration w are given
by EF = λL−Nf and � = λL−Nf +1 − λL−Nf , respectively.
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authors is insufficient to describe correctly the ground-state properties of the model in this
region (U ∼ 7).

The fact that the correlated hopping can induce metal–insulator transitions indicates that
the picture of valence and metal–insulator transitions found in our previous papers within the
conventional FKM [5,6,16] should be dramatically changed if finite values of t ′ are considered.
The largest changes are expected in the strong-coupling limit (U > 4), where all ground states
of the conventional FKM are insulating for both 1D and 2D case [5,13,16], while the numerical
results obtained for non-zero t ′ indicate the existence of a metallic phase, at least for nf = 1/2.
We suppose that this important result is not restricted to the half-filled-band case only, but
holds also for f-electron densities away from this point. To verify this conjecture, we have
performed an exhaustive study of the model for nf = 1/4 on 6 × 6, 8 × 8, and 12 × 12
clusters. Our numerical calculations showed that the phase diagram of the model at nf = 1/4
is separated into two distinct regions. In the first region (U < 2) the phase diagram has a
complex structure with the ground state apparently changing point by point at every value of
the correlated hopping amplitude t ′ for fixed interaction strength. Unfortunately, the structure
of the phase diagram in this region strongly depends on the size of the cluster and thus we
were not able to extrapolate these results satisfactorily to the thermodynamic limit L → ∞. In
contrast to this case, the phase diagram exhibits a very simple structure (see the inset in figure 1)
in the opposite limit (U > 2). In this region only two configurations are ground states of the
FKM with correlated hopping—namely, the segregated configuration and the configuration w4

(see figure 2) that has been proven to be the ground state of the conventional FKM for large
U (see [16, 17]). Since the configuration ws is metallic and w4 insulating, we have correlated
hopping-induced metal–insulator transitions also at nf = 1/4. The metallic phase is stable
up to U ∼ 7 and this again confirms our conjecture that the comprehensive picture of metal–
insulator transitions in the FKM with correlated hopping will be very different from the one
found for the conventional FKM, especially for U large. To complete this picture, one has
to perform similar calculations for all f-electron densities which is an onerous computational
task, even for the 8 × 8 cluster. Work on this is currently in progress.

In summary, the effects of correlated hopping on the ground-state properties of the FKM
in two dimensions have been studied. It was shown that the ground-state phase diagram as well
as the picture of metal–insulator transitions found for the conventional FKM are substantially
changed when the correlated hopping term is added. The effect of correlated hopping is so
strong that it can induce a insulator–metal transition, even in the strong-coupling limit, where
the ground states of the conventional FKM are insulating for all f-electron densities.
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